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Abstract 

Maintaining comparability of test scores is a major challenge faced by testing programs that have 

almost continuous administrations. Among the potential problems are scale drift and rapid 

accumulation of errors. Many standard quality control techniques for testing programs, which 

can effectively detect and address scale drift for small numbers of administrations yearly, are not 

always adequate to detect changes in a complex, rapid flow of scores. To address this issue, 

Educational Testing Service has been conducting research into applying data mining and quality 

control tools from manufacturing, biology, and text analysis to scaled scores and other relevant 

assessment variables. Data mining tools can identify patterns in the data and quality control 

techniques can detect trends. This type of data analysis of scaled scores is relatively new, and 

this paper gives a brief overview of the theoretical and practical implications of the issues. More 

in-depth analyses to refine the approaches for matching the type of data from educational 

assessments are needed. 

Key words: data mining, quality control, scale drift, scaled scores, time series, Shewhart control 

charts, CUSUM charts, change-point models, hidden Markov models 
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Maintaining comparability of test scores is a major challenge faced by testing programs 

that have almost continuous administrations. Among the potential problems are scale drift and 

rapid accumulation of errors, which can be exacerbated by a lack of time between these 

administrations. Traditional quality control (QC) techniques available to psychometricians have 

been developed for tests with only a small number of administrations per year, but while very 

valuable and necessary, these techniques are not sufficient for catching changes in a complex and 

rapid flow of scaled scores.  

This paper gives a brief overview of several statistical tools used in other fields, such as 

manufacturing, biology, and text analysis, that are potential useful for monitoring the reported 

scores. Recent research conducted at Educational Testing Service (ETS) on these methodologies 

is reviewed. In the past, psychometricians focused on the quality of the results from one 

administration at a time, monitoring only a few variables. Nowadays, with the advances of 

technology, one can capture more data than the responses of a candidate (process data, for 

example). In addition, many assessments today have an almost continuous administration mode. 

Once practitioners decide to analyze a vector of variables that describe a testing administration as 

part of a system of test forms given at numerous administrations, they need to approach the data 

analysis differently than they did previously. The variables now contain information ranging 

from specific item-level statistics to test-level statistics and include process, background, and 

collateral information, all of which is collected for each administration. The size of the data 

matrix becomes too substantial for a simple visual inspection, and tools that can discover trends 

and patterns in the data are desirable. The data sets from educational testing are significantly 

smaller than those from text analysis and biology; nevertheless, they are large enough to be 

overwhelming for evaluation without additional automatic analyses and appropriate models.1 

Therefore, in order to preserve the quality of measurement and the validity of the test over time, 

the review process needs to incorporate QC tools that look at the test score data as a time series 

(eventually a multivariate time-series) in addition to the traditional QC tools. Monitoring and 

maintaining the quality and stability of the scaled scores of a standardized assessment are 

perhaps the most important goals of psychometricians’ work on an assessment. A scale that is 

stable indicates that the meaning of the reported scores has been preserved over time. 

Consequently, this stability supports the validity of the test for the intended use over time. Often, 

the distribution of scaled scores might drift from the initial distribution due to socioeconomic and 
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other demographic factors that are not under the control of test developers and psychometricians. 

If a situation such as this occurs, then the potential causes of the shifts have to be investigated 

and addressed (see Dorans, 2002). If the test scores and the relevant demographic variables are 

continuously monitored, then a continuous and minimal adjustment can be implemented as part 

of the measurement process (see Duong & von Davier, 2012; Haberman & Yang, 2011; Qian, 

von Davier, & Jiang, 2012). In addition to the shifts due to demographics, operational mistakes, 

such as the computing or reporting of an incorrect score (one that is lower or higher than the 

correct score), may have serious implications on the test validity in the context of educational 

measurement. Operational mistakes might preclude a qualified candidate from being accepted to 

college, lead to incorrect course placement, cause a misguided educational intervention, or result 

in the granting of a professional license to a person who lacks the required qualifications. 

Moreover, mistakes that cause real damage of this kind can precipitate legal action against the 

testing company or the educational institution. “Finally, a high incidence of such mistakes will 

have an adverse impact on test reliability and validity of the test” (Allalouf, 2007, p. 36). Other 

causes of sudden changes in the test score distribution might be due to item exposure and 

breaches in test security. If these changes are not detected, then the validity of the test can break 

down.2 Allalouf (2007) discussed the definition of quality in the context of educational 

measurement:  

W.E. Deming, one of the founders of the philosophy and application of statistical 

control of quality, defines it as follows: “Inspection with the aim of finding the bad 

ones and throwing them out is too late, ineffective, and costly. Quality comes not from 

inspection but from improvement of the process.” A relevant definition for the present 

purposes is as follows: Quality control is a formal systematic process designed to 

ensure that expected quality standards are achieved during scoring, equating, and 

reporting of test scores. (p. 37) 

I would modify the definition of quality as follows: Quality control in educational 

measurement is a formal systematic process designed to ensure that expected quality standards 

are achieved during scoring, equating, and reporting of test scores at each administration and 

across administrations during the life of the test. 

This paper reviews recent research that was conducted at ETS to enhance the use of data 

analysis, monitoring, classification, and prediction techniques in evaluating equating results. The 
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perspective is that quality control and data mining tools from manufacturing, biology, and text 

analysis can be successfully applied to scaled scores and other relevant variables of an 

assessment. The quality control techniques may help with detecting trends, while the data mining 

tools may help with identifying (useful) patterns in the data that accompany the scaled scores. 

This type of data analysis of scaled scores is relatively new and, as with any new application, is 

subject to the typical pitfalls: Are the appropriate variables included? Are the identified patterns 

meaningful? 

Approaches to Monitoring and Maintaining the Stability of Scaled Scores 

Equating is a statistical procedure that allows for scores from different test forms of the 

same standardized assessment to be used interchangeably. As with any statistical model, the 

equating procedure has to balance bias and error. Bias can be introduced by the equating model 

if the assumptions of the model are not well met and if the samples are not representative, and 

error is introduced by fluctuations in the sample sizes and representativeness of test takers from a 

target population and by fluctuations in the sample sizes and representativeness of items from a 

population of possible items that cover the construct(s) to be measured (see also Zumbo, 2007). 

The equating process is the primary tool for maintaining the stability of scaled scores. The 

equating design, the statistical procedure, the selection of the common items, and the 

composition of the equating sample all can contribute to the variance of the scores. As mentioned 

earlier, for assessments with a large number of administrations each year, all these errors may 

potentially cumulate over time.  

Traditional Quality Control Approaches 

In general, after each test administration, the results are evaluated at several levels. First, 

a team of psychometricians will conduct the standard item, test, and equating analysis and insure 

that no errors occurred at the administration level (Allalouf, 2007; Dorans, Moses, & Eignor, 

2011). Then a second level of the evaluation will take place, where the results are considered as 

part of a series of administrations over time. The team will carefully monitor the changes in 

demographics over time, the seasonality of the test, the trends in the results, the results of 

subgroups of test takers, the consistency among the sections of the test over time, and so on. One 

can easily see that, without appropriate models, it is difficult in this situation to make sense of a 
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large amount of data in a short period of time (1 or 2 days) or to detect a perilous emerging 

pattern or trend.  

In recent years at ETS, researchers considered monitoring the following variables: means 

and variances of the scaled and raw scores, means and variances of item parameters after they 

were placed on a common item response theory (IRT) scale, IRT linking parameters over time 

(the estimated slope and intercept of the linear relationship between the item/person parameters 

from the old and new administrations or from the item bank and the new administration), 

correlations among different sections of the tests, automatic and human scoring data, background 

variables, and so on.  

New Approaches to Quality Control 

Some of the variables mentioned above have been investigated by the team responsible 

for the quality of scores, but in the recent years, this investigation has focused more on patterns 

over a long chain of administrations. We attempted to address these inquires by using Shewhart 

control charts to visually inspect the data over time; time series models to model the 

relationship of test difficulty and test scores means over time; harmonic regression to remove 

seasonality, cumulative sum (CUSUM) charts, change-point models, and hidden Markov 

models to detect sudden changes; and weighted mixed models and analysis of variance to detect 

patterns in the data.  

Methods of statistical process control, widely used in industrial settings for quality 

assurance of mass production, were applied to the field of educational measurement in the last 

few decades. Van Krimpen-Stoop and Meijer (2001) employed CUSUM control charts to 

develop a person-fit index in a computer-adaptive testing environment. Armstrong and Shi 

(2009) further developed model-free CUSUM methods to detect person-fit problems. Meijer 

(2002) explored the statistical process control techniques to ensure quality in a measurement 

process in operational assessments. Veerkamp and Glas (2000) used CUSUM charts to detect 

drifts in item parameter estimates in a computer-adaptive testing environment. Omar (2010) used 

statistical process control charts for measuring and monitoring temporal consistency of ratings. 

However, the applications were different than those described here.  

Next, three steps in analyzing the assessment data for quality control purposes are 

reviewed: (a) the inspection of the data and the use of the traditional analyses, (b) the use of 

control charts for detecting trends, and (c) the use of statistical models for detecting abrupt 
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changes and patterns in the data. These steps are defined by the chronological order in which the 

procedures mention here will be applied: First we apply the traditional analyses at each test 

administration; then we compare the results from this administration to the past administrations 

in look for trends; and later on, we research the data for abrupt changes and patterns.  

Inspection of the Data 

The first step in monitoring the test results over time is to learn as much as possible about 

the data matrix. How do different parts of the assessment relate to each other? Do they all tell the 

same story? Li (2011) identified correlations between IRT linking parameters and specific 

features of an administration, such as the difficulty of the test form, and proposed monitoring 

these correlations over time. If something looks like an outlier, then one can look further into the 

potential causes of these irregularities. Do the test results exhibit seasonality? How do the test 

results depend on subgroups of test takers and how do these group dependencies look when 

investigated over time? It is customary to have equating braiding plans in place for testing 

programs. A braiding plan is a design for equating new test forms back to multiple old test forms 

in order to avoid the accumulation of the seasonality effects over time and to reduce the potential 

bias introduced by the item selection, especially by the item selection in the anchor sets.  

The means and variances of the test results are very visible to test users and are the first 

variables to consider in a long-term analysis. Let us assume that one is interested in monitoring 

the variable means of scaled scores for a test over time. Figure 1 displays four hypothetical 

distributions of means of equated scores. Let Xt denote the scaled mean score of administration t, 

t=1,…, T. Let σ be the standard deviation of mean scores across time. The sample mean of X1,…, 

XT is denoted by X . 

Figure 2 shows an obvious seasonality point in July. Some of the considerations for an 

equating design include the issue of similarity in ability of the test takers, the accumulation of a 

potential bias of equating over time, and the exposure of the test design that might lead to 

security breaches. In this example, one should avoid equating test forms from July to July each 

year because the seasonality effects might accumulate. This recommendation is contrary to the 

customary approach of equating a test form back to the test form administered in the same month 

of the previous year to insure a similar population of test takers.3 On the other hand, if one 

equates July to October, the equating results might be weak due to the large differences in ability  
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Figure 1. Hypothetical plot of observed means of scaled scores of different tests. 

between the two groups. A possible braiding design for the example given in Figure 2 is one in 

which each test form administered in a given month of a year is equated back to three test forms 

from the previous year and then the scaled results are averaged. See Figure 3 for an example. 

One might also consider giving different weights to the three strands of equating. Note that if the 

test security is a concern, then this braiding plan might be too easy to detect. Consequently, in a 

real application, one might consider a variable braiding plan in which each of the two equating 

strands might change. 

The SAT®, for example, has a braiding plan with four equating strands, each of them with 

different weights (Dorans & Liu, 2009). With this plan, any possible seasonality due to the 

differences in the ability of test takers at different times of the year is adjusted. Obviously, if a 

test has a braiding plan, then each of the parts of the braiding plan and their (weighted) sum have 

to be monitored. 

2 4 6 8 10

3
3
.5

3
4
.0

3
4
.5

3
5
.0

Y1

Test Administration

M
e
a
n
 S

c
a
le

d
 S

c
o
re

2 4 6 8 10

3
4
.2

3
4
.6

3
5
.0

3
5
.4

Y2

Test Administration

M
e
a
n
 S

c
a
le

d
 S

c
o
re

2 4 6 8 10

3
5
.0

3
5
.5

3
6
.0

3
6
.5

Y3

Test Administration

M
e
a
n
 S

c
a
le

d
 S

c
o
re

2 4 6 8 10

3
5
.2

3
5
.4

3
5
.6

3
5
.8

3
6
.0

Y4

Test Administration

M
e
a
n
 S

c
a
le

d
 S

c
o
re



 

7 

 

Figure 2. An example of seasonality for a hypothetical test. In this example, the unit of the 

scale is 10 (for illustration purposes) and the peak is due to a particular timing of an 

administration. Other types of seasonality are also possible. 

 

Figure 3. An example of one possible braiding plan for the hypothetical test in Figure 1. In 

this example, the form given in July this year will be equated back to three old forms, two 

from the previous year and one from earlier this year. The equating strands will have 

different weights. 

Charts and a Visual Inspection 

The second step is to inspect Shewhart control charts for individual or average of the 

means of scaled scores (see Figure 4 for an example of a Shewhart control chart for average of 

the means of scaled scores). The Shewhart control chart has a baseline and upper and lower 

limits that are symmetric about the baseline. This particular method is described here in more 

detail because it is simpler to implement than others while being very useful for detecting trends. 
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Measurements are plotted on the chart versus a time line. The baseline is the process mean, 

which is estimated by using the average from historical data (mean of the means). Control limits 

are computed from the process standard deviation (the standard deviation of the means4). The 

upper (UCL) and lower (LCL) control limits are 

UCL = mean of means + k (process standard deviation) 

and (1) 

LCL = mean of means – k (process standard deviation), 

where k is the distance of the control limits from the baseline (mean of means), expressed in 

terms of standard deviations units. When k is set to 3, the charts are called 3-sigma control charts 

(see National Institute of Standards and Technology [NIST], n.d.; Western Electric Company, 

1958). 

One visually inspects the control charts and identifies outliers. Usually, the variability of 

the process is monitored as well. Measurements that are outside the limits are considered to be 

out of control according to various rules (see Lee & von Davier, in press; NIST, n.d.; or Western 

Electric Company, 1958). The challenge is that the chart leads to a multiple comparison. The 

simplest rule is to declare that an outlier is a point that is outside the 3 sigma band. Other rules 

are more stringent and might increase the probability of a false alarm. See, for example, the 

Western Electric Company rules (Western Electric Company, 1958). The chart properties are 

derived under the assumptions that the parameters of the process, the means and standard 

deviations, are known. When the estimates of these parameters are not computed based on a 

large amount of data, the chart might lead to false alarms. A major disadvantage of a Shewhart 

control chart is that the chart uses only the information contained in the last sample observation 

and it ignores any information given by the entire sequence of points. This feature makes 

Shewhart control charts relatively insensitive to small process shifts. Therefore, as recommended 

by Lee and von Davier (in press), CUSUM charts should be inspected next. See Montgomery 

(2009) for a definition of CUSUM charts. Note that the standard assumptions for control charts 

are that the data are normally and independently distributed (an assumption that might not 

always be met). The CUSUM chart might be able to detect the point at which a process change 

has occurred. 
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Figure 4. Example of a Shewhart control chart. 

Control charts do not work well if the variable of interest exhibits even low levels of 

correlation over time (Montgomery, 2009). If seasonality is present in the data, then the 

observations might exhibit a higher degree of autocorrelation. In studies by Lee and Haberman 

(2011) and Lee and von Davier (in press), harmonic regression (e.g., Brockwell & Davis, 2002) 

is used to describe and account for seasonal patterns. Once the seasonality is accounted for, then 

the control charts can be applied on the residuals. An example of a seasonal pattern is described 

in Figure 2. 

Closer Inspection 

Time Series Models 

The third step is applying time-series techniques. One might model the series of 

individual raw-to-scale conversions over many administrations using a regression model with 

autoregressive moving-average (ARMA) errors. See Box and Jenkins (1970) for theoretical 

details on the models. An ARMA model has two parts: the auto-regressive part (AR) and the 
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moving-average part (MA). The variability of the raw-to-scale conversions across score points 

could be an indicator of the variability of the scale (see Li, Li, & von Davier, 2011). For reliable 

parameter estimation in a time-series model, one should require a moderately long sequence of 

equating results (at least 50). As in Li et al. (2011), let a simple regression with ARMA errors be 

fitted to this series of mean of scaled scores Xt for 1 ≤ t ≤
 
T for T administrations, with f(t) as an 

explanatory variable.5 (Form difficulty was used in Li et al., 2011; perhaps more appropriate 

variables are gender, native language, other group memberships, reason for taking the test, etc.) 

This regression is equivalently written as 

Xt = β0 + β1 f(t)+ Wt.  (2) 

In Equation 2,
 
Wt is an error sequence for 1 ≤ t ≤ T; β0 is the intercept; and β1 is the effect 

of form difficulty on changes in the equated scores, Xt. If Wt are independently randomly 

distributed for all t, Wt ~
 
WN(0, 2

Wσ ), Equation 2 becomes the ordinary regression, and β0, β1, and 

2
Wσ

 
can be obtained through the least squares estimation method. However, in equating contexts, 

where forms are linked to or chained from each other, the error sequence Wt may be time-

correlated, and it is more appropriate to fit a suitable ARMA (p, q) model. For example, Wt in 

Equation 2 could follow an AR(1) model for every t (i.e., an autoregressive process with order p 

=1, q = 0), or Wt could follow an MA(2) process for every t (i.e., a moving-average process with 

order p = 0, q = 2). Note that one may consider a multivariate ARMA model if more than one 

test will be investigated simultaneously.6 Li et al. (2011) investigated the MA(2) model for a set 

of simulated assessment data. 

It is desirable to test whether or not Wt is independently distributed and homoscedastic for 

all t. Two procedures are often employed to test whether autocorrelations exist in errors Wt. One 

is the Durbin-Watson test (e.g., Chatfield, 2003, p. 69) and the other is the Ljung-Box test (Ljung 

& Box, 1978). The null hypothesis for the Durbin-Watson test is that the errors are uncorrelated, 

with the alternative hypothesis that the errors satisfy an AR(1) model. Rejecting the test suggests 

that autocorrelations exist in Wt and that Wt may not be independently distributed, for all t, 1 ≤
 
t ≤

 
T. The null hypothesis for the Ljung-Box test is similar; that is, the errors are independent. 

Rejecting the test suggests Wt may not be independent.  
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Models for Detecting Abrupt Changes 

Next, one may consider applying a change-point model (Hawkins, Qiu, & Kang, 2003) or 

a hidden Markov model (HMM; Visser, Raijmakers, & van der Maas, 2009) to detect a point in 

time when the test results might contain a significant change (see Lee & von Davier, in press). 

The main tasks of change-point detection are first to decide whether there has been a change, and 

if so, to estimate the time at which it occurred. Hidden Markov models have to be applied to long 

(univariate) time series. The models consist of a measurement model that relates the state to an 

observation—(in our case, the observations are means of scaled scores assumed to come from a 

normal distribution) and transition states (the state space is finite and the states are associated 

with transition probabilities of moving from one state to another). Note that hidden Markov 

models are extensions of latent class models with repeated measurements that are applied to 

shorter multivariate time series. Figure 5 shows an example of a two-state Markov system. For 

example, one can assume that the two states are (a) a series of the mean scores that is unchanged 

and (b) a series of the mean scores that is changed. Lee and von Davier (in press) investigated 

one-, two-, and three-state Markov systems. The Markov model with one state is equivalent to a 

time series or a regression model.  

For this example, we assume the system has only two states, denoted by s1 and s2. There 

are discrete time steps, t =1, t=2, … (administrations). On the tth time step, the system is in 

exactly one of the available states. Call this state qt, with qt ∈ {s1, s2}. Denote the transition 

matrix by A = (aij)i,j = 1,2, with the transition probability aij. Then the Markov model for this 

example is defined by the following formulas for the transition probabilities: 

(3) 

and then the transition matrix is 

 (4) 

Applications of the statistical quality control tools, change point models, and hidden 

Markov models seem to be valuable in detecting trends and change points. Lee and von Davier 

(in press) illustrated the usefulness of these methodologies for detecting trends and abrupt 
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changes. These models supplement the developed time-series models for monitoring stability of 

other variables, including the standard deviations of scale scores, linking parameters, and so on. 

 

Figure 5. Example of a two-state Markov system applied to a hypothetical mean scores 

series with a change-point. 

Models for Detecting Patterns in the Data 

One might be interested in mining the data further by identifying patterns of test scores 

per subgroups of test takers. Luo, Lee, and von Davier (2011) investigated a multivariate 

weighted mixed model in which the means of scaled scores are predicted by several background 

variables and the Test Administration variable, which is defined by specific sample compositions 

at each administration. Luo et al. applied this model to two test sections from a subset of 

operational data from an international language assessment. The background factors (which in 

this study were Country, Language, and Reason for Taking the Test) and their interactions are 

assumed to have fixed effects on the mean of scaled score vectors. A factor is said to have a 

fixed effect if it only influences the mean of the scaled score vectors. Two or more factors are 

said to have an interaction if the effect of one factor on the mean of scaled score vectors depends 

on the level of other factors. The factor Test Administration is assumed to have a random effect 

on the mean of scaled score vectors, but to have no interactions with the background factors. A 

factor is said to have a random effect if it influences the variances of the means of scaled score 
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vectors but not the mean of the means of scaled score vectors. The random effect accounts for 

the variability in the sample composition across test administrations. The response of the model 

is the mean of scaled scores of each cross-class group for each administration. Given the 

composition of a test administration, the variances of the mean of scaled-score vectors for each 

group are inversely proportional to their group sizes, and therefore, the weight used in the 

weighted mixed model is the group size. Luo et al. concluded that the interaction of Language 

and Reason has fixed effects on the mean of scaled scores of one of the test sections and that the 

interaction of Country and Language has fixed effects on the mean of scaled scores of the other 

test section. In addition, Luo et al.’s study seemed to indicate that the random effect of Test 

Administration has a significant effect on the mean of scaled scores of the two test sections 

separately. They hypothesized that the variability of the composition of the sample across 

administrations is the source of this significant effect. 

The results from the multivariate weighted mixed model can be further applied to identify 

unusual results at a specific administration. A target population of all test takers has to be 

defined. If the population is known and the samples at each administration are drawn from it, 

then a prediction interval can be calculated. If for any of the analyzed tests, an observed mean of 

scaled score is outside the prediction interval, this indicates that there might be some other 

factors that might impact the mean of the scaled scores but are not accounted for in the model. 

Hence, the Luo et al. study (2009) suggested that building a target population with a specific 

composition provides a way to detect unusual test administrations. Specifying a target population 

is a challenging undertaking for most educational assessments that do not have a sampling 

scheme underlying the data collection. Survey assessments, on the other hand, do have a clear 

target population, and various subgroups can be assigned weights appropriately. Defining a 

target population for complex educational assessments and creating appropriate weights for its 

subgroups is an area that needs further research. The studies conducted by Qian et al. (2012) and 

Duong and von Davier (2012) are preliminary attempts to address these questions. 

The study by Haberman, Guo, Liu, and Dorans (2008) examined trends in the SAT 

means and consistency of SAT raw-to-scale conversions for about 54 SAT administrations 

across 9 years. Descriptive statistics and analysis of variance were used. This method suggested a 

reasonable upper bound on errors and provided information concerning the stability of test 

construction, among other sources of variation. 
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Conclusions 

This paper presents a new perspective on quality control in assessments that is 

appropriate for the new generation of tests that have a continuous or almost continuous 

administration mode and that are delivered on the computer (and therefore, allow for the 

collection of additional information, such as response time). These types of assessments include 

linear tests but also computer adaptive tests, multistage adaptive tests, and linear on-the-fly tests. 

Moreover, the tools described here can be applied to other assessment variables of interest.  

The perspective I take on scale maintenance is that equating designs, samples, and 

common items should be monitored, tightly controlled, and regularly adjusted as needed to 

ensure the preservation of the meaning of the test scores. This perspective follows the 

recommendations of Dorans (2002), who described the scale of the reported scores as an 

infrastructure of the test, which as with any infrastructure, needs careful and regular 

maintenance. Consequently, the need to monitor and maintain the stability of the scale score 

leads to new approaches for control and adjustment, such as tightening the control of the linking 

parameters, adjusting the samples to match a target distribution, and investigating relevant 

equating subgroups in order to obtain a better equating procedure (for details, see the papers of 

Duong & von Davier, 2012; Haberman & Yang, 2011; Qian et al., 2012).  

As with all new applications, the approaches described here require more in-depth 

analyses to refine them for matching the type of data from educational assessments. Other 

promising research investigates the usefulness of dynamic linear models applied to the 

consistency of linked IRT parameters (Wanjohi, van Rijn, & von Davier, 2012) or the 

application of linear mixed effects models applied to individual scores (Liu, Lee, & von Davier, 

2012). Future research might use explorative data mining techniques on the response data and 

background variables and process data from many test administration over several years. Yao, 

von Davier, and Haberman (2012) are working on such an application. The theoretical and 

practical implications of the issues discussed in this paper are crucial for all standardized 

assessments with nontraditional equating designs and features.  
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Notes 
 

1 Note that the discussion provided in this paper is appropriate for tests for which the distribution 

of the ability of the test takers is assumed to be unchanged over time (except for seasonality 

effects that are discussed later in the paper). This assumption insures that the stochastic process 

(resulted after the seasonality was accounted for) is stationary, which in turn, is a required 

assumption for the time-series models. Therefore, this type of analysis is not appropriate for 

longitudinal data or vertical scaling data. 

2 Individual security breaches are also detrimental to test validity. Different procedures are used 

additionally to detect those situations.  

3 In most operational programs, equating is done under the assumption of similar ability 

distributions across administrations.  

4 The sample standard deviation might be biased. See the National Institute of Standards and 

Technology (n.d.) for the appropriate formulas for the expected value of the sample standard 

deviation and for the standard deviation of the sample standard deviation. 

5 Item parameter estimates need to be put on the same IRT scale before score equating so that the 

average form difficulty can be compared from one test form to another. 

6 Equation 2 shows the use of a time-series model as a data mining tool; that is, as a tool for 

detecting significant effects of factors of interests. The model in Equation 2is also called an 

ARMA with an exogenous input model or an ARMAX model. One could apply the time-series 

model directly to Xt, as is the case with the harmonic regression and with the hidden Markov 

systems (with one state). 
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